1. <dl id="oxmgu"></dl>

      <dl id="oxmgu"></dl>

      日本精品一区福利丰满人妻,五月综合网亚洲乱妇久久,手机看片福利一区,亚洲一二在线

      banner_ad_1
      數(shù)量關(guān)系考點(diǎn)——排列組合
      2023-09-07 02:29
      來(lái)源:政華公考

      數(shù)量關(guān)系考點(diǎn)——排列組合

      知識(shí)引導(dǎo)

      排列組合題常用到以下四種解題方法:

      1.優(yōu)限法

      適用環(huán)境:題干中出現(xiàn)有絕對(duì)限制條件的元素或者位置時(shí),考慮用優(yōu)限法。

      具體操作:優(yōu)先安排有限制條件的元素或者位置,再安排其他元素或者位置。

      【例1】一次會(huì)議某單位邀請(qǐng)了10名專(zhuān)家,該單位預(yù)定了10個(gè)房間,其中一層5間、二層5間。已知邀請(qǐng)專(zhuān)家中4人要求住二層、3人要求住一層、其余3人住任一層均可。那么要滿(mǎn)足他們的住房要求且每人1間,有多少種不同的安排方法(   )?

      A.75      B.450        C.7200           D.43200

      【答案】D【解析】本題中要將10名專(zhuān)家安排到10個(gè)房間,且每間安排一人。在安排過(guò)程中提到兩個(gè)要求:1.4人要求住2層,2.3人要求住1層。這兩個(gè)要求就體現(xiàn)了我們說(shuō)的“有絕對(duì)限制條件的元素”。因此我們考慮用優(yōu)限法解決。共有10人,其中4人要求住2層,從二層的5個(gè)房間中選出4個(gè),安排4人入住,其方法數(shù)為3人要求住一層,從一層的5個(gè)房間中選出3個(gè),安排3人入住,其方法數(shù)為,其余3人安排住剩下的3個(gè)房間,其方法數(shù)為,故共有種不同的安排方案。

      2.捆綁法

      適用環(huán)境:題干中要求元素相鄰或者位置相鄰時(shí),考慮捆綁法。

      具體操作:先考慮整體的順序要求,再考慮整體內(nèi)部的順序要求。

      【例2】為加強(qiáng)機(jī)關(guān)文化建設(shè)某市直機(jī)關(guān)在系統(tǒng)內(nèi)舉辦演講比賽3個(gè)部門(mén)分別派出3、2、4名選手參加比賽,要求每個(gè)部門(mén)的參賽選手比賽順序必須相連,問(wèn)不同的參賽順序的種數(shù)在以下哪個(gè)范圍之內(nèi)(   )?

      A.小于1000     B.1000-5000        C.5001-20000        D.大于20000

      【答案】B【解析】本題中要安排3個(gè)部門(mén)中參賽選手的演出順序。在安排過(guò)程中要求每個(gè)部門(mén)的參賽選手比賽順序必須相連。這個(gè)要求體現(xiàn)了我們說(shuō)的“元素相鄰”,考慮用捆綁法,首先將三個(gè)部門(mén)的選手看成3個(gè)整體,考慮三個(gè)整體的出場(chǎng)順序,有=6種;其次考慮每個(gè)整體內(nèi)選手的出場(chǎng)順序,分別有=6種,=2種,=24種。則不同參賽順序的種數(shù)為6×6×2×24=1728,計(jì)算結(jié)果顯然大于1000小于5000,故此題答案為B。

      3.插空法

      適用環(huán)境:題干中要求元素不相鄰時(shí),考慮插空法。

      具體操作:先安排其他元素的位置,再將不相鄰的元素插空安排。

      【例3】由數(shù)字1、2、3、4、5組成無(wú)重復(fù)數(shù)字的五位數(shù),兩個(gè)偶數(shù)互不相鄰的五位數(shù)有幾個(gè)?

      【答案】72個(gè)【解析】本題中要用1-5個(gè)組成無(wú)重復(fù)數(shù)字的五位數(shù),組數(shù)過(guò)程中要求兩個(gè)偶數(shù)互不相鄰,這體現(xiàn)了我們說(shuō)的“要求元素不相鄰”,考慮用插空法。先安排剩余的3個(gè)奇數(shù),有=6種,再?gòu)钠鏀?shù)形成的4個(gè)空位中選2個(gè)空將剩余的2個(gè)偶數(shù)放入,有=12種,因此所求為6×12=72個(gè)。

      4.間接法

      如果題目直接考慮需要分類(lèi)比較多,而它的對(duì)立面包含情況比較少方便計(jì)算,我們可以用總方法數(shù)減去對(duì)立面方法數(shù)進(jìn)行計(jì)算。

      練習(xí)題

      1五名優(yōu)秀組員按順序做年終總結(jié)報(bào)告,小張只能第一個(gè)或最后一個(gè)作報(bào)告,一共有多少種報(bào)告順序   

      A.24          B.36        C.48          D.60

      【答案】C【解析】分析題目,其中對(duì)于小張而言,有絕對(duì)的位置限制,那么這道題應(yīng)該采用優(yōu)限法來(lái)解題,要優(yōu)先考慮小張的位置。由于小張只能第一個(gè)或最后一個(gè)作報(bào)告,那他只能從這兩個(gè)位置中選一個(gè),有2種選擇方法。對(duì)于其他人而言,題目沒(méi)有任何限制,那剩余的4人可以任意選擇報(bào)告位置,有選擇方法,所以共2×24=48種報(bào)告順序,結(jié)合選項(xiàng),答案就是C。

      2五名優(yōu)秀組員按順序做年終總結(jié)報(bào)告,同部門(mén)的小張和小李順序相鄰,一共有多少種報(bào)告方式   

      A.24           B.36         C.48          D.60

      【答案】C【解析】分析題目,小張和小李相鄰作報(bào)告,所以這道題應(yīng)該采用捆綁法來(lái)解答。假設(shè)將小張與小李捆綁在一起,則小張與小李作報(bào)告順序一定相鄰。將小張和小李看作一個(gè)整體,與剩余三人進(jìn)行排序,共報(bào)告順序,但是小張與小李兩個(gè)人之間也要排序,共2種報(bào)告順序。所以一共有24×2=48種報(bào)告順序,所以答案選C。

      3五名優(yōu)秀組員按順序做年終總結(jié)報(bào)告,同部門(mén)的小張和小李順序不能相鄰,一共有多少種報(bào)告順序   

      A.64         B.72       C.86           D.98

      【答案】B【解析】分析題目,小張和小李不相鄰,所以這道題應(yīng)該采用插空法來(lái)解答。插空法的使用原則是先將沒(méi)有要求的人的順序排好,再將小張和小李插入這些人形成的空隙中,則小張和小李自然不相鄰。根據(jù)這個(gè)方法,除小張與小李外,還有3個(gè)人,3個(gè)人排序方法有3個(gè)人形成了4個(gè)空位,再?gòu)?個(gè)空位中選兩個(gè)出來(lái)讓小明和小紅去插入,有順序,則總的報(bào)告順序有6×12=72種。故答案選B。

      4某交警大隊(duì)的16名民警中,男性為10人。現(xiàn)要選4人進(jìn)行夜間巡邏工作,要求男性民警不得少于2人,問(wèn):有多少種選人方法

      A.1605          B.1520        C.1071          D.930

      【答案】A【解析】男性民警為10人,則女性民警有6人。現(xiàn)要選四人且男性民警不得少于兩人,所以采用間接法,則男民警可以有2人、3人、4人,這三類(lèi)情況,情況數(shù)較多,考慮對(duì)立面,男性民警少于2人,即沒(méi)有男性民警或只有1名男性民警,兩類(lèi)情況,所以我們可以用總的情況數(shù)-1男3女的情況數(shù)-0男4女的情況數(shù)求解,則本題所求為種。故本題選A。

      排列組合之隔板模型

      一、隔板模型的含義及基本公式

      隔板模型,即將n個(gè)相同元素分給m個(gè)不同對(duì)象,要求元素全部分完,且每個(gè)對(duì)象至少分一個(gè)元素的模型,可見(jiàn)下題:

      1現(xiàn)有7個(gè)一樣的蘋(píng)果,要分給3個(gè)小朋友,每人至少分1個(gè),請(qǐng)問(wèn)有多少種分法

      【解析】題目要求把7個(gè)一樣的蘋(píng)果分給3個(gè)小朋友,每人至少分1個(gè)。可理解為將7個(gè)蘋(píng)果擺成一排,在中間的6個(gè)空中選2個(gè)空分別放隔板。此時(shí)將蘋(píng)果分為3堆,對(duì)應(yīng)3個(gè)小朋友分到的蘋(píng)果,

      由上題,我們也可以總結(jié)出隔板模型的基本公式:將n個(gè)相同元素分給m個(gè)不同對(duì)象,要求元素全部分完,且每個(gè)對(duì)象至少分一個(gè)元素,方法數(shù)為種。

      二、隔板模型的靈活應(yīng)用

      1.變式一:將n個(gè)相同元素分給m個(gè)不同對(duì)象,要求元素全部分完,且每個(gè)對(duì)象至少分n個(gè)元素。考慮先給每個(gè)對(duì)象分n-1個(gè)元素,再利用基本公式求解。

      210個(gè)蘋(píng)果分給3個(gè)人,每人至少分2個(gè),有多少種分法

      【解析】10個(gè)蘋(píng)果分給3個(gè)人,每人至少分2個(gè)。考慮先給每人分1個(gè)蘋(píng)果,那么還剩下7個(gè)蘋(píng)果。問(wèn)題轉(zhuǎn)化為繼續(xù)將7個(gè)蘋(píng)果分給3個(gè)人,每人至少分1個(gè)。根據(jù)隔板模型基本公式,

      2.變式二:將n個(gè)相同元素分給m個(gè)不同對(duì)象,要求元素全部分完,任意分配。考慮先從每個(gè)對(duì)象分別借一個(gè)元素,再利用基本公式求解。

      3某幼兒園購(gòu)買(mǎi)了15瓶飲料,要分給小明、小紅、小張3名小朋友。假設(shè)這些飲料任意分配給3名小朋友,則共有多少種不同的分配方式

      【解析】15瓶飲料分給3名小朋友,每人至少分0瓶。考慮先從每名小朋友借1瓶飲料,此時(shí)共有18瓶飲料,由于要還每人1瓶,所以此題就轉(zhuǎn)換成了將18瓶飲料分給3名小朋友,每人至少分1瓶。根據(jù)隔板模型基本公式,所求為分配方式。

      行測(cè)數(shù)量關(guān)系隔板“變形計(jì)”

      排列組合是行測(cè)考試中難度較高的一類(lèi)題型,但是“相同元素分配給不同對(duì)象”這類(lèi)題目有固定的解題方法,那就是“隔板模型”,只要勤加學(xué)習(xí),此類(lèi)題目求解會(huì)變得非常容易。然而在實(shí)際考試當(dāng)中,出題人總是會(huì)給同學(xué)們?cè)O(shè)置障礙,對(duì)基本模型進(jìn)行變形混淆大家做題的思路。下面就帶大家一起來(lái)了解一下隔板模型及常見(jiàn)變形題目的解答方法。

      115塊相同的糖果分給3個(gè)小朋友,每人至少分1塊,有多少種分配方法   

      A.89        B.90       C.91         D.92

      【答案】C【解析】15塊相同的糖果放成一排后,糖果間會(huì)形成14個(gè)空位,在這些空位中插入2個(gè)隔板就能將糖果分隔成3堆。因此小朋友們依次以堆為單位分掉糖果即可,選擇C項(xiàng)。

      小結(jié)1:隔板模型:將n個(gè)相同的元素分給m個(gè)不同的對(duì)象,每個(gè)對(duì)象至少分1個(gè),分配的方法數(shù)為:

      220個(gè)相同的籃球分給4個(gè)班級(jí),每個(gè)班級(jí)至少分2個(gè)籃球,共有多少種分配方法   

      A.455        B.441          C.400          D.315

      【答案】A【解析】本題與例1相似,但略有不同,區(qū)別在于:例1中每個(gè)對(duì)象至少分1個(gè),而例2中每個(gè)對(duì)象至少分2個(gè)。在分配時(shí),可以每班先分1個(gè),共分掉4個(gè)之后,本題就轉(zhuǎn)化成為“將16個(gè)相同的籃球分給4個(gè)班級(jí),每個(gè)班級(jí)至少分1個(gè)”。所以有選擇A項(xiàng)。

      小結(jié)2:隔板模型變形1:將n個(gè)相同的元素分給m個(gè)不同的對(duì)象,某些對(duì)象要求至少分k個(gè)元素k≥2),先給這些對(duì)象分k-1個(gè)元素,變型轉(zhuǎn)化為每個(gè)對(duì)象至少分1個(gè),再進(jìn)行計(jì)算。

      36本相同的作業(yè)本分給3名同學(xué),每個(gè)同學(xué)都可以不分作業(yè)本,共有多少種分配方法   

      A.28        B.36         C.40         D.48

      【答案】A【解析】本題與例1相似,但也略有不同,區(qū)別在于同學(xué)可以不分作業(yè)本。因此可以先向每個(gè)同學(xué)借1本,共借到3本之后,本題就轉(zhuǎn)化成為“將9本相同的作業(yè)本分給3名同學(xué),每人至少分1本”。選擇A項(xiàng)。

      小結(jié)3:隔板模型變形2:將n個(gè)相同的元素分給m個(gè)不同的對(duì)象,當(dāng)某些對(duì)象可以不分到元素時(shí),先向這些對(duì)象分別各借1個(gè),變形轉(zhuǎn)化為每個(gè)對(duì)象至少分1個(gè),再進(jìn)行計(jì)算。

      通過(guò)上述例題的介紹,相信同學(xué)們對(duì)于結(jié)合題目的不同變形要求,正確使用隔板模型有了一定的了解。舊書(shū)不厭百回讀,熟讀深思子自知。希望各位同學(xué)對(duì)于題目能反復(fù)練習(xí)和琢磨,做到舉一反三。


      微信
      QQ
      公眾號(hào)
      微博
      聯(lián)系電話(huà)
      日本精品一区福利丰满人妻,五月综合网亚洲乱妇久久,手机看片福利一区,亚洲一二在线
      1. <dl id="oxmgu"></dl>

          <dl id="oxmgu"></dl>
          靖江市| 固原市| 洛隆县| 右玉县| 扎囊县| 武安市| 濉溪县| 深圳市| 峨眉山市| 长寿区| 遂宁市| 瑞金市| 汉川市| 辽中县| 屏边| 庄河市| 乡城县| 东宁县| 富蕴县| 古交市| 连云港市| 盱眙县| 双鸭山市| 紫阳县| 巴塘县| 神农架林区| 泰来县| 交口县| 莱阳市| 阳山县| 东光县| 安化县| 平度市| 乌恰县| 远安县| 南投县| 桐庐县| 聂拉木县| 高青县| 桃江县| 宣汉县|